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1. The Decay of a Scalar Particle
From the Lagrangian given by,

1 1 1 1
H= 5(8;@)2 - §M2‘I’2 + 5(3;@)2 - §m2¢2 — u®g?,

we are to determine the lifetime of a ® particle to decay into two ¢’s to the lowest order in p assuming
that M > 2m.
We first notice that the interaction Hamiltonian is f d>zp®¢p¢. From this, we can directly calculate

the amplitude associated with our desired diagram: 10}
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The factor of 2 comes from Bose statistics associated with the two identical final ¢ particles. So,
IM|? = 4p®.

We have shown before that we can directly compute the decay width of a particle from the amplitude
by using the relation,

K] 2
2M/167r2 EcmM/” '

In the center of mass frame, the rest frame of the ®, E., = M, p = ( 0),k = (M/2 k) and
ky = (M/2,—Fk). From simple kinematics it is clear that |k| = (MTz —m ) =M (1-4m; ) . This

leads to
A2 M2 2\ 1/2
. e R Q.
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When we integrate over the solid angle €2, we should only cover 2w because the ¢’s are identical. After
integrating and simplifying terms we find that

p_ 2 <1—42>1/Q. (1.1)
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2. Massless Fermion Scattering in Yukawa Theory

a) We are to write the complete amplitude for scattering two massless fermions in Yukawa theory.
From previous homework and class notes this is,
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b) We are to compute the spin-averaged square of this amplitude explicitly. We will make explicit

use of our trace identities and will simplify in terms of the standard Mandelstam variables s, ¢
and u.

Let us begin our derivation by noting that the Mandelstam variables (in the massless limit)
are given by

s=p+p)=(k+k)?=2p p =2k-k,
t=((k-p2=Fk —p)=-2p-k=-2k;
u= (K —p?=(k-p)=-2pk=-2"k

We can now directly compute the spin averaged squared amplitude. When using the standard
trace technology, we will simplify our terms by noticing that m; = 0.
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d)

We can simplify this equation by recalling that, in general, >, m; = s + ¢ 4+ u. In the massless

case this reduces to s+t +u = 0 and so s* = —(t + u)?. We may therefore conclude that
12 u? tu
M2 = g + + ) (2.2)
E—m2)? " (u—m2? " (t—m2)u—m?)
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Let us reduce equation (2.2) to the case where mg = 0. By sight, this becomes

M2 =g*(1 +1+1) =3g¢" (2.3)

It is worth noting that this agrees with our homework result.

Let us now compute the total cross section for this event. We have previously demonstrated
that in the center of mass frame the differential cross section is given by

do|  TMP
dQ cm B 647T2E(?77L
To determine the total cross section, we must integrate over half the solid angle giving us a
factor of 2.

3g*
S 2.4
77 3nE2, (24)
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3. The Ward Identity for Compton Scattering
We are to explicitly verify the Ward identity, k, M" = 0, for the case of Compton scattering. This is
equivalent to a demonstration that when €, (k) = k,,

: VY A+ 2 2yt — A
M= - ke, (k =0.
M = it (e, (e | THES B
This demonstration will be much clearer if we rewrite the second term in the amplitude in terms
of (p'— k) instead of (p— k). This is reasonable because by momentum conservation p — k' = p’ — k.
To rewrite the amplitude, however, it is important to notice that the contraction that was used for

simplification, ( + m)y*u(p) = 2p*u(p) cannot be used when we use ('— k + m). We can, however,
contract to the left using u(p’). Doing so will yield

_ / Con [ A 29T 2p Ayt —
M = —ie e#(k e (K)a(p’) [ 5k ok u(p).

Let us derive this amplitude for the case of €,(k) = k, by brute force.

1 v HpV Vb v "
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—ie”e;, (K )u(p') [v* — v*] u(p) = 0.

[ kM (k) = 0. (3.1)

4. Compton Scattering in Scalar Quantum Electrodynamics
We are to consider the physics governed by the Lagrangian
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L= *%F/WFMV + DquTDMQZ) - m2¢T¢ - 2(¢T¢)2

As usual, F),, = 0,4, —0,A, and D,¢ = 0,¢ + icA,¢.

a) The Lagrangian is clearly invariant under the transformation ¢ — e~%“¢ because it contains
only squared terms and we can assume for now that « is a constant. So £ — £’ = £. Let us
compute the conserved Noether current.

First, let us rewrite the global phase transition to the first order to determine the variation
on each of the complex fields.

¢ — ¢ =e (1 —iea)p = Ap = —ieg;
¢T N ¢/T — eiea¢T ~ (1+ ieoz)qi)T = Ang - ieng.

We can use this to calculate the conserved Noether current associated with this symmetry.
From our earlier work in class and homework, we know that,

oL oL
A
90,0~ T 80,07
= (0" — icA"d)(—icd) + (8" + icAFd)(icd))
= ((—ie¢)D"¢" + (ie¢') D" ),

ot =ie (¢'D"p — pDMoT) . (4.1)
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gt = Agl,
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b) Even more interesting than global phase invariance, however, is that the Lagrangian is in fact
locally gauge invariant. A transformation of the form ¢ — e~ ()¢ will leave the Lagrangian
unchanged. The field strength tensor is invariant to this gauge as we know from electrodynamics.
Let us consider how the covariant derivative and the vector potential must transform to preserve
invariance with respect to this gauge.

By direct calculation, we see that

Du¢ — Dy = e‘im(m)Dufb — ie@ua(x)e_im(z)qb.
We can transform the vector potential by 4, — A}, = A4, + Oua(zx), and leave F),,, invariant
because we only add a total derivative. By adding this term, however, D,, will become invariant

under the local phase transformation. For precisely this utility, A, is defined to transform in
just the right way to maintain D,’s covariance. So,

Ay — Ay = A+ 0ua().
c) We are to draw the Feynman diagrams for v¢~ — ¢~ in scalar quantum electrodynamics to

the order e2. Using our given vertex terms and propagator terms derived earlier, we may directly
write the diagram. They are all additive by Bose statistics.

d) The amplitude for this interaction is,

iM= {eg(k')2i62g“”ey(k;) + € (k) (—ie(p +p' + k)“)m(_ie(p +p' +K)" e (k)
LK) (ielp 1 = K)o (i - k’)“>ey(k>} ,

o o, o+ +E)(p+p + R (p+p —K)(p+p —k)*

= e E,/“ (k/)el/(k) {_QQM + 2p -k - 2p/ -k ;
9 L Cp+ k)2 + K" (29 —K)V(2p - K)

= —ie“e,; (K )e, (k) {Zg“ + ok - ok .
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e) As in question (3) above, we must explicitly demonstrate the result of the Ward identity. This
can be accomplished by setting €,(k) = k, in the equation for the amplitude and see that
M — 0.

To demonstrate this case, it will be helpful to recall that a photon is represented by a null
vector, k,k” = 0, and that momentum is conserved, p+k —p’ —k’ = 0. Let us derive the result.

v / I\ /o v N\
iM= —ie2el*(k/)ky{—2gw+ (2p + k)" (2p" + k)" (20"~ k)" (2p — ) }
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P 2 Ik (1.0 . o .
zee“(k){ 2kH + 5k ok ,
, 2p-k)(2p' + K" (2p"-k)(2p — k)"
— 2 (1 — QLM ( _
zeeu(k){ EF 4 ok ok ,

= i (k) {—2k" + (2 + K'Y — (2p — K)}
= —2i€26;f(kl) {—p" — k" +p* + K"},
:(

= 722'626; k") {0},=0.

[ kMY (k) = 0.] (4.2)
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